Meet the metric system’s newest prefixes: ronna-, quetta-, ronto- and quecto-.
Adopted November 18 at the 27th General Conference on Weights and Measures in Versailles, France, ronna- and quetta- describe exceedingly large numbers while ronto- and quecto- describe the exceedingly small. This is the first time that the International System of Units, or SI, has expanded since 1991, when the prefixes zetta-, yotta-, zepto and yocto- were added (SN: 1/16/93).
Numerically, ronna- is 1027 (that’s a digit followed by 27 zeroes) and quetta- is 1030 (30 zeroes). Their tiny counterparts ronto- and quecto- also refer to 27 and 30 zeroes, but those come after a decimal point. Until now, yotta- and yocto- (24 zeros) capped off the metric system’s range.
Science News spoke with Richard Brown, head of metrology at the National Physical Laboratory in Teddington, England, about what the latest SI expansion means for science. The following conversation has been edited for clarity and brevity.
SN: Why do we need the new prefixes?
Brown: The quantity of data in the world is increasing exponentially. And we expect that to continue to increase and probably accelerate because of quantum computing, digitalization and things like that. At the same time, this quantity of data is starting to get close to the top range of the prefixes we currently use. People start to ask what comes next?
SN: Where do the prefix names come from?
Brown: About five years ago, I heard a BBC podcast about these new names for quantities of data. And the two that they mentioned were brontobyte and hellabyte. Brontobyte, I think comes from brontosaurus being a big dinosaur and hellabyte comes from “‘hell of a big number.”
The problem with those from a metrology point of view, or measurement point of view, is they start with letters B and H, which already are in use for other units and prefixes. So we can’t have those as names. [It was clear] that we had to do something official because people were starting to need these prefixes. R and Q are not used for anything else, really, in terms of units or SI prefixes. [The prefix names themselves are] very, very loosely based on the Greek and Latin names for nine and 10. SN: How will the prefixes be used?
Brown: The whole point of the International System of Units is it’s an accepted global system, which if you use, you will be understood.
When you use a prefix with a unit, it means that the number associated with the unit changes. And people like small numbers that they can understand. So you can express the mass of the Earth in terms of ronnagrams; it’s six ronnagrams. And equally the mass of Jupiter is two quettagrams. Some good examples of [small numbers] are that the mass of an electron is about one rontogram, and the mass of one bit of data as stored on a mobile phone is around one quectogram.
I think the use of a suitable prefix makes things more understandable. And I think we shouldn’t forget that even if there’s not always a direct scientific usage immediately, they will gain traction over time.
Tyrannosaurus rex isn’t just a king to paleontologists — the dinosaur increasingly reigns over the world of art auctions. A nearly complete skeleton known as Stan the T. rex smashed records in October 2020 when a bidding war drove its price to $31.8 million, the highest ever paid for any fossil. Before that, Sue the T. rex held the top spot; it went for $8.3 million in 1997.
That kind of publicity — and cachet — means that T. rex’s value is sky-high, and the dinosaur continues to have its teeth firmly sunk into the auction world in 2022. In December, Maximus, a T. rex skull, will be the centerpiece of a Sotheby’s auction in New York City. It’s expected to sell for about $15 million.
Another T. rex fossil named Shen was anticipated to sell for between $15 million and $25 million at a Christie’s auction in Hong Kong in late November. However, the auction house pulled it over concerns about the number of replica bones used in the fossil. “These are astronomical sums of money, really surprising sums of money,” says Donna Yates, a criminologist at Maastricht University in the Netherlands who studies high-value collectibles.
Stan’s final price “was completely unexpected,” Yates says. The fossil was originally appraised at about $6 million — still a very large sum, though nothing like the final tally, which was the result of a three-way bidding war.
But the staggering amounts of money T. rex fossils now fetch at auction can mean a big loss for science. At those prices, the public institutions that might try to claim these glimpses into the deep past are unable to compete with deep-pocketed private buyers, researchers say.
One reason for the sky-high prices may be that T. rex fossils are increasingly being treated more like rare works of art than bits of scientific evidence, Yates says. The bones might once have been bought and sold at dusty “cowboy fossil” dealerships. But nowadays these fossils are on display in shiny gallery spaces and are being appraised and marketed as rare objets d’art. That’s appealing to collectors, she adds: “If you’re a high-value buyer, you’re a person who wants the finest things.”
But fossils’ true value is the information they hold, says Thomas Carr, a paleontologist at Carthage College in Kenosha, Wis. “They are our only means of understanding the biology and evolution of extinct animals.”
Keeping fossils of T. rex and other dinosaurs and animals in public repositories, such as museums, ensures that scientists have consistent access to study the objects, including being able to replicate or reevaluate previous findings. But a fossil sold into private or commercial hands is subject to the whim of its owner — which means anything could happen to it at any time, Carr says. “It doesn’t matter if [a T. rex fossil] is bought by some oligarch in Russia who says scientists can come and study it,” he says. “You might as well take a sledgehammer to it and destroy it.”
A desire for one’s own T. rex There are only about 120 known specimens of T. rex in the world. At least half of them are owned privately and aren’t available to the public. That loss is “wreaking havoc on our dataset. If we don’t have a good sample size, we can’t claim to know anything about [T. rex],” Carr says.
For example, to be able to tell all the ways that T. rex males differed from females, researchers need between 70 and 100 good specimens for statistically significant analyses, an amount scientists don’t currently have.
Similarly, scientists know little about how T. rex grew, and studying fossils of youngsters could help (SN: 1/6/20). But only a handful of juvenile T. rex specimens are publicly available to researchers. That number would double if private specimens were included.
Museums and academic institutions typically don’t have the kind of money it takes to compete with private bidders in auctions or any such competitive sales. That’s why, in the month before Stan went up for auction in 2020, the Society for Vertebrate Paleontology, or SVP, wrote a letter to Christie’s asking the auction house to consider restricting bidding to public institutions. The hope was that this would give scientists a fighting chance to obtain the specimens.
But the request was ignored — and unfortunately may have only increased publicity for the sale, says Stuart Sumida, a paleontologist at California State University in San Bernardino and SVP’s current vice president. That’s why SVP didn’t issue a public statement this time ahead of the auctions for Shen and Maximus, Sumida says, though the organization continues to strongly condemn fossil sales — whether of large, dramatic specimens or less well-known creatures. “All fossils are data. Our position is that selling fossils is not scientific and it damages science.”
Sumida is particularly appalled at statements made by auction houses that suggest the skeletons “have already been studied,” an attempt to reassure researchers that the data contained in that fossil won’t be lost, regardless of who purchases it. That’s deeply misleading, he says, because of the need for reproducibility, as well as the always-improving development of new analysis techniques. “When they make public statements like that, they are undermining not only paleontology, but the scientific process as well.”
And the high prices earned by Stan and Sue are helping to drive the market skyward, not only for other T. rex fossils but also for less famous species. “It creates this ripple effect that is incredibly damaging to science in general,” Sumida says. Sotheby’s, for example, auctioned off a Gorgosaurus, a T. rex relative, in July for $6.1 million. In May, a Deinonychus antirrhopus — the inspiration for Jurassic Park’s velociraptor — was sold by Christie’s for $12.4 million.
Protecting T. rex from collectors Compounding the problem is the fact that the United States has no protections in place for fossils unearthed from the backyards or dusty fields of private landowners. The U.S. is home to just about every T. rex skeleton ever found. Stan, Sue and Maximus hail from the Black Hills of South Dakota. Shen was found in Montana.
As of 2009, U.S. law prohibits collecting scientifically valuable fossils, particularly fossils of vertebrate species like T. rex, from public lands without permits. But fossils found on private lands are still considered the landowner’s personal property. And landowners can grant digging access to whomever they wish. Before the discovery of Sue the T. rex (SN: 9/6/14), private owners often gave scientific institutions free access to hunt for fossils on their land, says Bridget Roddy, currently a researcher at the legal news company Bloomberg Law in Washington, D.C. But in the wake of Sue’s sale in 1997, researchers began to have to compete for digging access with commercial fossil hunters.
These hunters can afford to pay landowners large sums for the right to dig, or even a share of the profits from fossil sales. And many of these commercial dealers sell their finds at auction houses, where the fossils can earn far more than most museums are able to pay.
Lack of federal protections for paleontological resources found on private land — combined with the large available supply of fossils — is a situation unique to the United States, Roddy says. Fossil-rich countries such as China, Canada, Italy and France consider any such finds to be under government protection, part of a national legacy.
In the United States, seizing such materials from private landowners — under an eminent domain argument — would require the government to pay “just compensation” to the landowners. But using eminent domain to generally protect such fossils wouldn’t be financially sustainable for the government, Roddy says, not least because most fossils dug up aren’t of great scientific value anyway.
There may be other, more grassroots ways to at least better regulate fossil sales, she says. While still a law student at DePaul University in Chicago, Roddy outlined some of those ideas in an article published in Texas A&M Journal of Property Law in May.
One option, she suggests, is for states to create a selective sales tax attached to fossil purchases, specifically for buyers who intend to keep their purchases in private collections that are not readily available to the public. It’s “similar to if you want to buy a pack of cigarettes, which is meant to offset the harm that buying cigarettes does to society in general,” Roddy says. That strategy could be particularly effective in states with large auction houses, like New York.
Another possibility is to model any new, expanded fossil preservation laws on existing U.S. antiquities laws, intended to preserve cultural heritage. After all, Roddy says, fossils aren’t just bones, but they’re also part of the human story. “Fossils have influenced our folklore; they’re a unifier of humanity and culture rather than a separate thing.”
Though fossils from private lands aren’t protected, many states do impose restrictions on searches for archaeological and cultural artifacts, by requiring those looking for antiquities to restore excavated land or by fining the excavation of certain antiquities without state permission. Expanding those restrictions to fossil hunting, perhaps by requiring state approval through permits, could also give states the opportunity to purchase any significant finds before they’re lost to private buyers.
Preserving fossils for science and the public Such protections could be a huge boon to paleontologists, who may not even know what’s being lost. “The problem is, we’ll never know” all the fossils that are being sold, Sumida says. “They’re shutting scientists out of the conversation.”
And when it comes to dinosaurs, “so many of the species we know about are represented by a single fossil,” says Stephen Brusatte, a paleontologist at the University of Edinburgh. “If that fossil was never found, or disappeared into the vault of a collector, then we wouldn’t know about that dinosaur.”
Or, he says, sometimes a particularly complete or beautifully preserved dinosaur skeleton is found, and without it, “we wouldn’t be able to study what that dinosaur looked like, how it moved, what it ate, how it sensed its world, how it grew.”
The point isn’t to put restrictions on collecting fossils so much as making sure they remain in public view, Brusatte adds. “There’s nothing as magical as finding your own fossils, being the first person ever to see something that lived millions of years ago.” But, he says, unique and scientifically invaluable fossils such as dinosaur skeletons should be placed in museums “where they can be conserved and studied and inspire the public, rather than in the basements or yachts of the oligarch class.”
After its record-breaking sale, Stan vanished for a year and a half, its new owners a mystery. Then in March 2022, news surfaced that the fossil had been bought by the United Arab Emirates, which stated it intends to place Stan in a new natural history museum.
Sue, too, is on public view. The fossil is housed at Chicago’s Field Museum of Natural History, thanks to the pooled financial resources of the Walt Disney Corporation, the McDonald Corporation, the California State University System and others. That’s the kind of money it took to get the highest bid on a T. rex 25 years ago.
And those prices only seem to be going up. Researchers got lucky with Sue, and possibly Stan.
As for Shen, the fossil’s fate remains in limbo: It was pulled from auction not due to outcry from paleontologists, but over concerns about intellectual property rights. The fossil, at 54 percent complete, may have been supplemented with a polyurethane cast of bones from Stan, according to representatives of the Black Hills Institute of Geological Research in Hill City, S.D. That organization, which discovered Stan, retains a copyright over the skeleton.
In response to those concerns, Christie’s pulled the lot, and now says that it intends to loan the fossil to a museum. But this move doesn’t reassure paleontologists. “A lot of people are pleased that the sale didn’t go through,” Sumida says. “But it sort of just kicks the can down the road.… It doesn’t mean they’re not going to try and sell it in another form, somewhere down the road.”
Ultimately, scientists simply can’t count on every important fossil finding its way to the public, Carr says. “Those fossils belong in a museum; it’s right out of Indiana Jones,” he says. “It’s not like they’re made in a factory somewhere. Fossils are nonrenewable resources. Once Shen is gone, it’s gone.”
The infant universe transforms from a featureless landscape to an intricate web in a new supercomputer simulation of the cosmos’s formative years.
An animation from the simulation shows our universe changing from a smooth, cold gas cloud to the lumpy scattering of galaxies and stars that we see today. It’s the most complete, detailed and accurate reproduction of the universe’s evolution yet produced, researchers report in the November Monthly Notices of the Royal Astronomical Society.
This virtual glimpse into the cosmos’s past is the result of CoDaIII, the third iteration of the Cosmic Dawn Project, which traces the history of the universe, beginning with the “cosmic dark ages” about 10 million years after the Big Bang. At that point, hot gas produced at the very beginning of time, about 13.8 billion years ago, had cooled to a featureless cloud devoid of light, says astronomer Paul Shapiro of the University of Texas at Austin. Roughly 100 million years later, tiny ripples in the gas left over from the Big Bang caused the gases to clump together (SN: 2/19/15). This led to long, threadlike strands that formed a web of matter where galaxies and stars were born.
As radiation from the early galaxies illuminated the universe, it ripped electrons from atoms in the once-cold gas clouds during a period called the epoch of reionization, which continued until about 700 million years after the Big Bang (SN: 2/6/17).
CoDaIII is the first simulation to fully account for the complicated interaction between radiation and the flow of matter in the universe, Shapiro says. It spans the time from the cosmic dark ages and through the next several billion years as the distribution of matter in the modern universe formed.
The animation from the simulation, Shapiro says, graphically shows how the structure of the early universe is “imprinted on the galaxies today, which remember their youth, or their birth or their ancestors from the epoch of reionization.”
An ancient hominid dubbed Homo naledi may have lit controlled fires in the pitch-dark chambers of an underground cave system, new discoveries hint.
Researchers have found remnants of small fireplaces and sooty wall and ceiling smudges in passages and chambers throughout South Africa’s Rising Star cave complex, paleoanthropologist Lee Berger announced in a December 1 lecture hosted by the Carnegie Institution of Science in Washington, D.C.
“Signs of fire use are everywhere in this cave system,” said Berger, of the University of the Witwatersrand, Johannesburg.
H. naledi presumably lit the blazes in the caves since remains of no other hominids have turned up there, the team says. But the researchers have yet to date the age of the fire remains. And researchers outside Berger’s group have yet to evaluate the new finds.
H. naledi fossils date to between 335,000 and 236,000 years ago (SN: 5/9/17), around the time Homo sapiens originated (SN: 6/7/17). Many researchers suspect that regular use of fire by hominids for light, warmth and cooking began roughly 400,000 years ago (SN: 4/2/12).
Such behavior has not been attributed to H. naledi before, largely because of its small brain. But it’s now clear that a brain roughly one-third the size of human brains today still enabled H. naledi to achieve control of fire, Berger contends.
Last August, Berger climbed down a narrow shaft and examined two underground chambers where H. naledi fossils had been found. He noticed stalactites and thin rock sheets that had partly grown over older ceiling surfaces. Those surfaces displayed blackened, burned areas and were also dotted by what appeared to be soot particles, Berger said.
Meanwhile, expedition codirector and Wits paleoanthropologist Keneiloe Molopyane led excavations of a nearby cave chamber. There, the researchers uncovered two small fireplaces containing charred bits of wood, and burned bones of antelopes and other animals. Remains of a fireplace and nearby burned animal bones were then discovered in a more remote cave chamber where H. naledi fossils have been found.
Still, the main challenge for investigators will be to date the burned wood and bones and other fire remains from the Rising Star chambers and demonstrate that the fireplaces there come from the same sediment layers as H. naledi fossils, says paleoanthropologist W. Andrew Barr of George Washington University in Washington, D.C., who wasn’t involved in the work.
“That’s an absolutely critical first step before it will be possible to speculate about who may have made fires for what reason,” Barr says.
Marsupials may have richer social lives than previously thought.
Generally considered loners, the pouched animals have a wide diversity of social relationships that have gone unrecognized, a new analysis published October 26 in Proceedings of the Royal Society B suggests. The findings could have implications for how scientists think about the lifestyles of early mammals.
“These findings are helpful to move us away from a linear thinking that used to exist in some parts of evolutionary theory, that species develop from supposedly simple into more complex forms,” says Dieter Lukas, an evolutionary ecologist at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, who was not involved with the study.
Mammals run the gamut of social organization systems, ranging from loose, ephemeral interactions like aggregations of jaguars in the South American wetlands to the antlike subterranean societies of naked mole-rats (SN: 10/13/21; SN: 10/20/20).
But marsupials — a subgroup of mammals that give birth to relatively underdeveloped young reared in pouches — have traditionally been considered largely solitary. Some kangaroo species were known to form transient or permanent groups of dozens of individuals. But among marsupials, long-term bonds between males and females were thought rare and there were no known examples of group members cooperating to raise young. Previous work on patterns of mammalian social evolution regarded about 90 percent of examined marsupial species to be solitary.
“If you look at other [studies] about some specific species, you will see [the researchers] tend to assume that the marsupials are solitary,” says Jingyu Qiu, a behavioral ecologist at CNRS in Strasbourg, France.
Sorting social lives Qiu and her colleagues developed a database of field studies that illuminated marsupial social organization, taking into account how populations vary within a species and delving into the evolutionary history of marsupial social lives. The researchers compiled data from 120 studies on 149 populations of 65 marsupial species, categorizing each population as solitary, living in pairs — such as one male and one female — or falling into four kinds of group living, including one male and multiple females (or vice versa), multiple males and females, or single sex groups.
While 19 species, or 31 percent of those studied, appear to go strictly solo, nearly half of the species always live in pairs or groups. The team also found lots of variation within species; 27 of the 65 species — more than 40 percent — fell into multiple social organization classifications. When the researchers looked at this social variation against climatic conditions in Australia, they found that social variability was more common in drier environments with less predictable rainfall. It’s possible that being able to switch between solitary and group living acts as a buffer against resource unpredictability.
The researchers’ focus on social flexibility “highlights that there is nothing simple even about a supposedly solitary species,” Lukas says.
Implications for the earliest mammals Qiu and her colleagues also ran computer analyses comparing the evolutionary relationships of the marsupials with how they form social relationships. This let the team predict the social organization of the earliest marsupials, which split from placental mammals about 160 million years ago. Because modern marsupials have been considered solitary, the marsupial ancestors — and the earliest mammals on the whole — have generally been assumed to be solitary as well.
The team found that solitary was the most likely social category of the ancestral marsupials, a 35 percent probability. But Qiu points out that the varied combinations where pair and group living are possible options make up the other 65 percent. So “it is more likely that the ancestor was also non-solitary,” she says. The findings also give insights into the range of possible lifestyles experienced by the earliest mammals, she says.
But Robert Voss, a mammalogist at the American Museum of Natural History in New York City, questions the analyses’ insights about a potentially social ancestral marsupial. The uncertainty about the solitary alternative, he says, is largely due to the researchers’ benchmarks for what does and what doesn’t constitute social behavior — thresholds that Voss views as too permissive. For example, Voss disagrees with the team’s characterization of opossum social organization.
“Anecdotal observations of [members of the same species] occasionally denning together is not compelling evidence for social behavior,” says Voss. “None of the cited studies suggest that opossums are anything other than solitary.”
Future work, Qiu says, will involve gathering data on a larger subset of mammals outside of marsupials to get a clearer picture of how social traits have evolved among mammals.
A sacrificed spider monkey is shedding new light on an ancient Mesoamerican relationship.
The remains of a 1,700-year-old monkey found in the ancient city of Teotihuacan outside modern-day Mexico City suggest the primate was a diplomatic gift from the Maya. The find is the earliest evidence of a primate held in captivity in the Americas, researchers report November 21 in Proceedings of the National Academy of Sciences.
Unearthed in 2018 at the base of a pyramid in Teotihuacan, the monkey’s skeleton lay beside the corpses of other animals — including an eagle and several rattlesnakes — in an area of the city where visiting Maya elites may have resided.
Evidence of animal sacrifices, including of predators like jaguars, have been found in the city before. But “up to that point, we did not have any instances of sacrificed primates in Teotihuacan,” says Nawa Sugiyama, an anthropological archaeologist at the University of California, Riverside.
Chemical analysis of the spider monkey’s bones and teeth showed that the female had likely been captured in a humid environment at a young age sometime in the third century. The monkey then lived in captivity for a few years before meeting her end between the years 250 and 300.
The highlands around Mexico City are a long way from the natural habitat of spider monkeys (Ateles geoffroy), which require wet tropical forests to thrive. This fact, along with the presence of Maya murals and vessels, suggests to Sugiyama and her colleagues that the spider monkey was a gift from elite Mayas to the people of Teotihuacan.
The find is an example of diplomatic relations between two cultures that sometimes had violent interactions. Maya hieroglyphs indicated that military forces from Teotihuacan invaded the Maya city of Tikal in 378, marking the start of a roughly 70-year period in which Teotihuacan meddled in Maya politics (SN: 10/22/21).
The “striking” discovery of the monkey shows that relationship between these two cultures far predates the invasion, says David Stuart, an archaeologist and epigraphist at the University of Texas at Austin who was not involved in the study.
“The war of 378 had a long history leading up to it,” he says. “The monkey is a really compelling illustration of this long relationship.”
Josep Cornella doesn’t deal in absolutes. While chemists typically draw rigid lines between organic and inorganic chemistry, Cornella, a researcher at Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr, Germany, believes in just the opposite.
“You have to be open to cross boundaries,” he says, “and learn from it.” The fringes are “where the rich new things are.”
Cornella is an organic chemist by industry standards; he synthesizes molecules that contain carbon. But he’s put together a team from a wide range of backgrounds: inorganic chemists, physical organic chemists, computational chemists. Together, the team brainstorms novel approaches to designing new catalysts, so that chemical reactions essential to pharmaceuticals and agriculture can be made more efficient and friendly for the environment. Along the way, Cornella has unlocked mysteries that stumped chemists for years.
“He has told us about catalysts … that we didn’t have before, and which were just pipe dreams,” says Hosea Nelson, a chemist at Caltech who has not worked with Cornella. Bold idea When Cornella heard a speaker at a 2014 conference say that bismuth was nontoxic, he was sure it was a mistake. Bismuth is a heavy metal that sits between toxic lead and polonium on the periodic table. But it is indeed relatively nontoxic — it’s even used in the over-the-counter nausea medicine Pepto-Bismol.
Still, bismuth remains poorly understood. That’s one reason it attracted him. “It was a rather forgotten element of the periodic table,” Cornella says. But, “it’s there for a reason.”
Cornella started wondering if an element like bismuth could be trained for use as a catalyst. For the last century, scientists have been using transition metals, like palladium and iron, as the main catalysts in industrial synthesis. “Could we actually train [bismuth] to do what these guys do so well?” he asked. It was a conceptual question that “was completely naïve, or maybe stupid.”
Far from stupid: His team successfully used bismuth as a catalyst to make a carbon-fluorine bond. And bismuth didn’t just mimic a transition metal’s role — it worked better. Only a small amount of bismuth was required, much less than the amount of transition metal needed to complete the same task.
“A lot of people, including myself and other [researchers] around the world, have spent a lot of time thinking about how to make bismuth reactions catalytic,” Nelson says. “He’s the guy who cracked that nut.”
Standout research While the bismuth research is “weird” and “exciting,” Cornella says, it remains a proof of concept. Bismuth, though cheap, is not as abundant as he had hoped, so it’s not a very sustainable option for industry.
But other Cornella team findings are already being used in the real world. In 2019, the group figured out how to make an alternative to Ni(COD)2, a finicky catalyst commonly used by chemists in the lab. If it’s not kept at freezing temperatures and protected from oxygen by a layer of inert gases, the nickel complex falls apart.
The alternative complex, developed by Lukas Nattmann, a Ph.D. student in Cornella’s lab at the time, stays stable in oxygen at room temperature. It’s a game changer: It saves energy and materials, and it’s universal. “You can basically take all those reactions that were developed for 60 years of Ni(COD)2 and basically replace all of them with our catalyst, and it works just fine,” Cornella says. Cornella’s lab is also developing new reagents, substances that transform one material into another. The researchers are looking to transform atoms in functional groups — specific groupings of atoms that behave in specific ways regardless of the molecules they are found in — into other atoms in a single step. Doing these reactions in one step could cut preparation time from two weeks to a day, which would be very useful in the pharmaceutical industry
Taking risks It’s the success that gets attention, but failure is “our daily basis,” Cornella says. “It’s a lot of failure.” As a student, when he couldn’t get a reaction to work, he’d set up a simple reaction called a TBS protection — the kind of reaction that’s impossible to get wrong — to remind himself that he wasn’t “completely useless.”
Today he runs a lab that champions taking risks. He encourages students to learn from one another about areas they know nothing about. For instance, a pure organic chemist could come into Cornella’s lab and leave with a good understanding of organometallic chemistry after spending long days working alongside a colleague who is an expert in that area.
To Cornella, this sharing of knowledge is crucial. “If you tackle a problem from just one unique perspective,” he says, “maybe you’re missing some stuff.”
While Cornella might not like absolutes, Phil Baran, who advised Cornella during his postdoctoral work at Scripps Research in San Diego, sees Cornella as fitting into one of two distinct categories: “There are chemists who do chemistry in order to eat, like it’s a job. And there are chemists who eat in order to do chemistry,” Baran says. Cornella fits into the latter group. “It’s his oxygen.”
Growing up in Brazil, Marcos Simões-Costa often visited his grandparents’ farm in the Amazon. That immersion in nature — squawking toucans and all — sparked his fascination with science and evolution. But a video of a developing embryo, shown in his middle school science class, cemented his desire to become a developmental biologist.
“It’s such a beautiful process,” he says. “I was always into drawing and art, and it was very visual — the shapes of the embryo changing, the fact that you start with one cell and the complexity is increasing. I just got lost in that video.”
Today, Simões-Costa, of Harvard Medical School and Boston Children’s Hospital, is honoring his younger self by demystifying how the embryo develops. He studies the embryos and stem cells of birds and mice to learn how networks of genes and the elements that control them influence the identity of cells. The work could lead to new treatments for various diseases, including cancer.
“The embryo is our best teacher,” he says. Standout research Simões-Costa focuses on the embryo’s neural crest cells, a population of stem cells that form in the developing central nervous system. The cells migrate to other parts of the embryo and give rise to many different cell types, from the bone cells of the face to muscle cells to brain and nerve cells.
Scientists have wondered for years why, despite being so similar, neural crest cells in the cranial region of the embryo can form bone and cartilage, while those in the trunk region can’t form either. While a postdoc at Caltech, Simões-Costa studied the cascade of molecules that govern how genes are expressed in each cell type. With his adviser, developmental biologist Marianne Bronner, he identified transcription factors — proteins that can turn genes on and off — that were present only in cranial cells. Transplanting the genes for those proteins into trunk cells endowed the cells with the ability to create cartilage and bone.
Now in his own lab, he continues to piece together just how this vast regulatory network influences the specialization of cells. His team reconstructed how neural crest cells’ full set of genetic instructions, or the genome, folds into a compact, 3-D shape. The researchers identified short DNA sequences, called enhancers, that are located in faraway regions of the genome, but end up close to key genes when the genome folds. These enhancers work with transcription factors and other regulatory elements to control gene activity.
Simões-Costa is also using neural crest cells to elucidate a strange behavior shared by cancer cells and some embryonic cells. These cells produce energy anaerobically, without oxygen, even when oxygen is present. Called the Warburg effect, this metabolic process has been studied extensively in cancer cells, but its function remained unclear.
Colored tracks representing cell movements.. Through experiments manipulating the metabolism of neural crest cells, Simões-Costa’s team found that the Warburg effect is necessary for the cells to move around during early development. The mechanism, which should stay turned off in nonembryonic cells, somehow “gets reactivated in adult cells in the context of cancer, leading those cells to become more migratory and more invasive,” Simões-Costa says.
“He’s one of the few people who’s really looked at [this process in neural crest cells] at a molecular level and done a deep dive into the mechanisms underlying it,” says Bronner.
Cleverly combining classical embryological methods with the latest genomic technologies to address fundamental questions in developmental biology is what makes Simões-Costa special, says Kelly Liu, a developmental biologist at Cornell University. He wants to understand not only what individual genes do, but how they work at a systems level, she says.
What’s next How does the genetic blueprint tell cells where they are in the embryo, and what they should be doing? How do cancer cells hijack the Warburg effect, and could understanding of that process lead to new treatments? These are some of the questions Simões-Costa wants to tackle next.
“It’s been 20 years since the Human Genome Project came to a conclusion,” he says, referring to the massive effort to read the human genetic instruction book. “But there’s still so much mystery in the genetic code.”
Those mysteries, plus a deep passion for lab work, fuel Simões-Costa’s research. “Being at the bench is when I’m the happiest,” he says. He likens the delicate craft of performing precise surgeries on tissues and cells to meditation. “It does not get old.”
The glossy leaves and branching roots of mangroves are downright eye-catching, and now a study finds that the moon plays a special role in the vigor of these trees.
Long-term tidal cycles set in motion by the moon drive, in large part, the expansion and contraction of mangrove forests in Australia, researchers report in the Sept. 16 Science Advances. This discovery is key to predicting when stands of mangroves, which are good at sequestering carbon and could help fight climate change, are most likely to proliferate (SN: 11/18/21). Such knowledge could inform efforts to protect and restore the forests. Mangroves are coastal trees that provide habitat for fish and buffer against erosion (SN: 9/14/22). But in some places, the forests face a range of threats, including coastal development, pollution and land clearing for agriculture. To get a bird’s-eye view of these forests, Neil Saintilan, an environmental scientist at Macquarie University in Sydney, and his colleagues turned to satellite imagery. Using NASA and U.S. Geological Survey Landsat data from 1987 to 2020, the researchers calculated how the size and density of mangrove forests across Australia changed over time.
After accounting for persistent increases in these trees’ growth — probably due to rising carbon dioxide levels, higher sea levels and increasing air temperatures — Saintilan and his colleagues noticed a curious pattern. Mangrove forests tended to expand and contract in both extent and canopy cover in a predictable manner. “I saw this 18-year oscillation,” Saintilan says.
That regularity got the researchers thinking about the moon. Earth’s nearest celestial neighbor has long been known to help drive the tides, which deliver water and necessary nutrients to mangroves. A rhythm called the lunar nodal cycle could explain the mangroves’ growth pattern, the team hypothesized.
Over the course of 18.6 years, the plane of the moon’s orbit around Earth slowly tips. When the moon’s orbit is the least tilted relative to our planet’s equator, semidiurnal tides — which consist of two high and two low tides each day — tend to have a larger range. That means that in areas that experience semidiurnal tides, higher high tides and lower low tides are generally more likely. The effect is caused by the angle at which the moon tugs gravitationally on the Earth.
Saintilan and his colleagues found that mangrove forests experiencing semidiurnal tides tended to be larger and denser precisely when higher high tides were expected based on the moon’s orbit. The effect even seemed to outweigh other climatic drivers of mangrove growth, such as El Niño conditions. Other regions with mangroves, such as Vietnam and Indonesia, probably experience the same long-term trends, the team suggests.
Having access to data stretching back decades was key to this discovery, Saintilan says. “We’ve never really picked up before some of these longer-term drivers of vegetation dynamics.”
It’s important to recognize this effect on mangrove populations, says Octavio Aburto-Oropeza, a marine ecologist at the Scripps Institution of Oceanography in La Jolla, Calif., who was not involved in the research.
Scientists now know when some mangroves are particularly likely to flourish and should make an extra effort at those times to promote the growth of these carbon-sequestering trees, Aburto-Oropeza says. That might look like added limitations on human activity nearby that could harm the forests, he says. “We should be more proactive.”
Cocooned within the bowels of the Earth, one mineral’s metamorphosis into another may trigger some of the deepest earthquakes ever detected.
These cryptic tremors — known as deep-focus earthquakes — are a seismic conundrum. They violently rupture at depths greater than 300 kilometers, where intense temperatures and pressures are thought to force rocks to flow smoothly. Now, experiments suggest that those same hellish conditions might also sometimes transform olivine — the primary mineral in Earth’s mantle — into the mineral wadsleyite. This mineral switch-up can destabilize the surrounding rock, enabling earthquakes at otherwise impossible depths, mineral physicist Tomohiro Ohuchi and colleagues report September 15 in Nature Communications. “It’s been a real puzzle for many scientists because earthquakes shouldn’t occur deeper than 300 kilometers,” says Ohuchi, of Ehime University in Matsuyama, Japan.
Deep-focus earthquakes usually occur at subduction zones where tectonic plates made of oceanic crust — rich in olivine — plunge toward the mantle (SN: 1/13/21). Since the quakes’ seismic waves lose strength during their long ascent to the surface, they aren’t typically dangerous. But that doesn’t mean the quakes aren’t sometimes powerful. In 2013, a magnitude 8.3 deep-focus quake struck around 609 kilometers below the Sea of Okhotsk, just off Russia’s eastern coast.
Past studies hinted that unstable olivine crystals could spawn deep quakes. But those studies tested other minerals that were similar in composition to olivine but deform at lower pressures, Ohuchi says, or the experiments didn’t strain samples enough to form faults.
He and his team decided to put olivine itself to the test. To replicate conditions deep underground, the researchers heated and squeezed olivine crystals up to nearly 1100° Celsius and 17 gigapascals. Then the team used a mechanical press to further compress the olivine slowly and monitored the deformation.
From 11 to 17 gigapascals and about 800° to 900° C, the olivine recrystallized into thin layers containing new wadsleyite and smaller olivine grains. The researchers also found tiny faults and recorded bursts of sound waves — indicative of miniature earthquakes. Along subducting tectonic plates, many of these thin layers grow and link to form weak regions in the rock, upon which faults and earthquakes can initiate, the researchers suggest.
“The transformation really wreaks havoc with the [rock’s] mechanical stability,” says geophysicist Pamela Burnley of the University of Nevada, Las Vegas, who was not involved in the research. The findings help confirm that olivine transformations are enabling deep-focus earthquakes, she says.
Next, Ohuchi’s team plans to experiment on olivine at even higher pressures to gain insights into the mineral’s deformation at greater depths.