Education rights of children living in extremely high-altitude pastoral region guaranteed thanks to assistive policies in Xizang

The Sinopec Primary School of Baingoin is dubbed as "the school closest to the sky."

The school, built by state-owned Sinopec as an aiding project, sits 4,700 meters above sea level in the small, remote county of Baingoin in Nagqu in Southwest China's Xizang (Tibet) Autonomous Region.

It bestows the most precious gift to children of pastoral region - education.

Despite the harsh and desolate local environment, the school functions as a complete educational complex, boasting a standard playground, nearly 30 modern classrooms, and dormitory buildings featuring glass greenhouse for students. The primary teaching building is constructed in the Tibetan architectural style, resembling a Tibetan palace. 

Recently, during a visit to the school, a Global Times reporter saw both girls and boys chasing basketballs around the playground. One class was engaging in traditional Tibetan Guozhuang dance under the guidance of their teacher. As the sun began to set, the fragrance of Tibetan incense wafted through the glass greenhouse and greenery-filled teaching buildings, where in a classroom, some young students learned how to write the Chinese character for "answer."

In 2009, with the support of China Petrochemical Corporation (Sinopec Group), the construction of the Baingoin Sinopec Primary School began. It was officially completed and put into use in 2012, greatly motivating the enthusiasm of local pastoral families to send their children to school and contributing to the development of education in Baingoin county.

Initially, the school was designed to accommodate approximately 800 students and operate with a semi-boarding model. 

"Because the students come from remote areas and their parents are often occupied with work, ensuring their safety and daily habits is essential," explained Ngawang Wangdu, the principal of Sinopec Primary School, told the Global Times.

However, as the initial capacity could not meet demand, the school successfully applied for a second phase of expansion from both the government and Sinopec headquarters, allowing for the accommodation of more students. 

Presently, the school hosts 1,323 students, with 600 of them residing on the school premises. 

"Lower-grade students are predominantly day students, while those in grades three to six primarily reside at the school," the principal said. "The school operates throughout the entire year despite summer or winter vacations, leading to students spending an extended time at the school."

A fourth-grade student, Padma Gyaltsen, appears slightly smaller than his peers. Fluently and articulately speaking Putonghua (Standard Chinese), he stated that his class schedule includes English, Chinese, mathematics, Tibetan language, music, information technology and physical education. 

"I find the conditions here to be exceptional. The meals in the cafeteria are delicious, and the teachers help you solve any difficulties in life," he shared with the Global Times. 

Padma Gyaltsen's family lives on a pastoral ranch, which takes two hours to reach by car from the county. Nowadays, pastoralists also place great importance on their children's education. Therefore, Padma Gyaltsen and his cousin were brought to the county town at an early age to attend kindergarten and primary school. 

"Before boarding at the school, I resided in a rented apartment, and was taken care of by my aunt," he said.

After becoming a resident student, Padma Gyaltsen adapted well and achieved outstanding grades. During his free time, he enjoys playing basketball. 

"I like Kobe Bryant the most, and when I heard about his passing, I cried for a day," he mentioned. 

"I feel like all the boys and girls in my class are my friends, and my classmates are like my brothers and sisters," he added, expressing his desire to become a special police officer, similar to his uncle.

The school receives various forms of support, including national special policies, Xizang special education policies, and assistance from the China Petrochemical Corporation. This support is directed toward enhancing hardware facilities, equipment, and software improvement.

The school places a strong emphasis on student living conditions and safety management, implementing various measures, noted Ngawang Wangdu, the principal. Additionally, its boarding system provides an opportunity for students from economically disadvantaged families. Parents also understand the school's favorable policies and efforts, and there are no dropouts, he said.

After graduation, all students have a 100 percent placement rate in higher education, and outstanding students may have the opportunity to be enrolled into schools in Lhasa or other much more developed regions in China such as Beijing.

The school is dedicated to providing high-quality education while ensuring the safety and well-being of its students, all with the aim of achieving the goal of satisfying the educational needs of the local population, Ngawang Wangdu said.

Guillaume Guibe, a French engineer working for Sinopec in Beijing, visited the school in 2022 and shared his experience with Global Times. He expressed that he had initially envisioned children studying in tents but was pleasantly surprised by the actual conditions. He was even able to converse with a student in English. 

"For the Xizang region, the third pole of our planet, miracles of nature stand everywhere, and the people here are also creating miracles," Guibe mentioned in his vlog.

Here’s how much coronavirus people infected with COVID-19 may exhale

The virus that causes COVID-19 spreads through the air. But just how much virus people breathe out over the course of infection isn’t well-defined.

To pin the numbers down, olfactory researcher Gregory Lane and colleagues analyzed over 300 breath samples from 43 people with COVID-19, following them for nearly three weeks. Levels varied between and within individuals, but some people shed a lot, releasing over 800 copies of viral RNA per minute at times.

On average, participants breathed out 80 copies per minute for a full eight days after symptoms began, the team reports September 8 in a preprint posted at medRxiv.org. Only after that point did the viral particles drop to nearly undetectable levels.
Lane, of Northwestern University Feinberg School of Medicine in Chicago, and colleagues still need to confirm what percentage of that exhaled viral RNA comes from viruses that can still replicate in another person’s body. And scientists don’t yet know how much virus is required for infection.

But, based on the new data, the team estimates that a high shedder could potentially exhale enough virus to infect someone in a closed space in about 20 seconds, making even elevator rides risky. With an average shedder, infection could take a little under four minutes.

The new study, which will be published in eLife, provides valuable information that both nasal swab studies and one-time aerosol experiments cannot, says infectious diseases researcher Kristen Coleman (SN: 7/16/23). Swabs sample only one part of the respiratory tract. And many aerosol experiments measure the amount of virus people spewed while talking, singing or reading aloud, as well as while while breathing, at just a single point during infection (SN: 08/17/21).

Lane’s team devised a simple and cheap tool — essentially a plastic mouthpiece attached to a closed tube — that participants took home with them and breathed into for 10 minutes at a time. That allowed the team to easily collect samples over an extended period of time and track how emissions changed during infection. But the makeshift tool lacks the precision of advanced machines in laboratories and hospitals, says Coleman, of the University of Maryland School of Public Health in College Park. Even the spike of 876 viral RNA copies per minute seen in the new study may be an underestimate by several orders of magnitude, she says.

In the new study, those who reported more severe symptoms tended to emit more virus. Yet even asymptomatic people or those with mild cases breathed out substantial amounts of viral RNA. Both vaccinated and unvaccinated people exhaled similar levels.

The U.S. Centers for Disease Control and Prevention currently recommends that people who are mildly ill or asymptomatic isolate for at least five days and then mask for another five. Lane would offer different advice: “If my friends or family asked me, I’d say you should isolate through day eight.”

Cancer killers send signal of success

New cancer-fighting nanoparticles deliver results — and status reports.

Tiny biochemical bundles carry chemotherapy drugs into tumors and light up when surrounding cancer cells start dying. Future iterations of these lab-made particles could allow doctors to monitor the effects of cancer treatment in real time, researchers report the week of March 28 in the Proceedings of the National Academy of Sciences.

“This is the first system that allows you to read out whether your drug is working or not,” says study coauthor Shiladitya Sengupta, a bioengineer at Brigham and Women’s Hospital in Boston.
Each roughly 100-nanometer-wide particle consists of a drug and a fluorescent dye linked to a coiled molecular chain. Before the particles enter cells, the dye is tethered to a “quencher” molecule that prevents it from lighting up. When injected into the bloodstream of a mouse with cancer, the nanoparticles accumulate in tumor cells and release the drug, which activates a protein that tears a cancer cell apart. This cell-splitting protein not only kills the tumor cell, but also severs the link between the dye and the quencher, allowing the nanoparticles to glow under infrared light.

Previous techniques could track drugs entering tumors, but that “doesn’t necessarily tell you whether the drug is working or not,” says study coauthor Ashish Kulkarni, a bioengineer at Brigham and Women’s and at Harvard Medical School.
The team tested the nanoparticles in mice that each had two types of tumor: one resistant to the drug in the particles and one responsive to the drug. Drug-sensitive tumors glowed around five times as intensely as the resistant tumors. Results were swift, with tumors lighting up in eight to 12 hours.
Replacing the particles’ cancer drug with antibodies that summoned the body’s tumor-fighting defenses allowed the team to test the nanoparticles as immunotherapy agents. In this case, tumors lit up after five days, reflecting an initial lag time of immunotherapy compared with chemotherapy.

These nanoparticles are a proof of concept, Sengupta says. Next steps include redesigning the nanoparticles using clinically approved materials and dyes that would be easier to track in the human body with the use of an MRI machine. But such imaging chemicals can be toxic, which could pose a problem for the nanoparticle design, says cancer nanotechnologist Mansoor Amiji of Northeastern University in Boston. Dyes should be cleared from the body as quickly as possible, while the drug they’re paired with might take weeks to work. But the study’s focus on detecting drug performance in real time is very important, and demands further study, Amiji says. “There’s tremendous need, especially as we think about personalizing cancer therapies.”

Gamers outperform computer at quantum task

Editor’s note: On July 22, 2020, Nature retracted the study described in this article at the authors’ request. “We, the authors, are regretfully retracting this article owing to an error in our computer code that means the quantitative results reported are not valid,” the team writes in the retraction. The error was pointed out by a researcher unaffiliated with the original study.

Human intuition might seem useless in the weird world of quantum mechanics. It’s a peculiar realm in which particles can be in multiple places at once and can tunnel through barriers that should be impenetrable. But, scientists report in a paper published online April 13 in Nature, in a quantum-inspired game, humans bested computers.

“To me it is more than surprising — it is really mind-blowing,” says physicist Tommaso Calarco of Ulm University in Germany, who was not involved in the study.

The researchers, led by physicist Jacob Sherson of Aarhus University in Denmark, based their game on a quantum computer made up of atoms trapped in a grid pattern, and enticed gamers into finding the optimal way to shuttle atoms back and forth. In this type of quantum computer, scientists must move the atoms quickly and precisely in order to make calculations. Unbeknownst to the gamers, they were helping researchers edge closer to the “quantum speed limit”set by the laws of physics at the smallest scales, which caps the speed of such calculations.
In the game, known as Quantum Moves, atoms are represented by colored liquid contained in a well. The player controls another well, using it to collect and move the liquid. But this is no normal fluid: make a wrong move and it spreads out into an uncontrollably sloshing quantum mess.
The players outperformed the scientists’ computer algorithm, coming up with strategies the computer missed. The researchers then fed the human strategies back into their algorithm to improve the results, thereby drawing closer to the quantum speed limit.

Sherson was surprised at the players’ success. “Maybe we have a tendency to make it too academic and too scary, this world of quantumness,” he says. “What our games do is they sort of force you to form a quantum intuition.”

Sherson now hopes to recruit more Quantum Moves players to help him better understand how humans form their strategies. Computer and mobile versions of the game are available online.

Why create a model of mammal defecation? Because everyone poops

An elephant may be hundreds of times larger than a cat, but when it comes to pooping, it doesn’t take the elephant hundreds of times longer to heed nature’s call. In fact, both animals will probably get the job done in less than 30 seconds, a new study finds.

Humans would probably fit in that time frame too, says Patricia Yang, a mechanical engineering graduate student at the Georgia Institute of Technology in Atlanta. That’s because elephants, cats and people all excrete cylindrical poop. The size of all those animals varies, but so does the thickness of the mucus lining in each animal’s large intestine, so no matter the mammal, everything takes about the same time — an average of 12 seconds — to come out, Yang and her colleagues conclude April 25 in Soft Matter.

But the average poop time is not the real takeaway here (though it will make a fabulous answer to a question on Jeopardy one day). Previous studies on defecation have largely come from the world of medical research. “We roughly know how it happened, but not the physics of it,” says Yang.

Looking more closely at those physical properties could prove useful in a number of ways. For example, rats are often good models for humans in disease research, but they aren’t when it comes to pooping because rats are pellet poopers. (They’re not good models for human urination, either, because their pee comes out differently than ours, in high-speed droplets instead of a stream.)

Also, since the thickness of the mucus lining is dependent on animal size, it would be better to find a more human-sized stand-in. Such work could help researchers find new treatments for constipation and diarrhea, in which the mucus lining plays a key role, the researchers note.

Animal defecation may seem like an odd topic for a mechanical engineer to take on, but Yang notes that the principles of fluid dynamics apply inside the body and out. Her previous research includes a study on animal urination, finding that, as with pooping, the time it takes for mammals to pee also falls within a small window. (The research won her group an Ig Nobel Prize in 2015.)

And while many would find this kind of research disgusting, Yang does not. “Working with poop is not that bad, to be honest,” she says. “It’s not that smelly.” Plus, she gets to go to the zoo and aquarium for her research rather than be stuck in the lab.
But the research does involve a lot of poop — and watching it fall. For the study, the researchers timed the how long it took for animals to defecate and calculated the velocity of the feces of 11 species. They filmed dogs at a park and elephants, giant pandas and warthogs at Zoo Atlanta. They also dug up 19 YouTube videos of mammals defecating. Surprisingly, there are a lot of those videos available, though not many were actually good for the research. “We wanted a complete event, from beginning to end,” Yang notes. Apparently not everyone interested in pooping animals bothers to capture a feces’ full fall.

The researchers also examined feces from dozens of mammal species. (They fall into two classes: Carnivores defecate “sinkers,” since their feces are full of heavy indigestible ingredients like fur and bones. Herbivores defecate less-dense “floaters.”) And they considered the thickness and viscosity of the mucus that lines mammals’ intestines and helps everything move along as well the rectal pressure that pushes the material. All this information went into a mathematical model of mammal defecation — which revealed the importance of the mucus lining.

Yang isn’t done with this line of research. The model she and her colleagues created applies only to mammals that poop like we do. There’s still the pellet poopers, like rats and rabbits, and wombats, whose feces look like rounded cubes. “I would like to complete the whole set,” she says. And, “if you’ve got a good team, it’s fun.”

The way poison frogs keep from poisoning themselves is complicated

For some poison dart frogs, gaining resistance to one of their own toxins came with a price.

The genetic change that gives one group of frogs immunity to a particularly lethal toxin also disrupts a key chemical messenger in the brain. But the frogs have managed to sidestep the potentially damaging side effect through other genetic tweaks, researchers report in the Sept. 22 Science.

While other studies have identified genetic changes that give frogs resistance to particular toxins, this study “lets you look under the hood” to see the full effects of those changes and how the frogs are compensating, says Butch Brodie, an evolutionary biologist at the University of Virginia in Charlottesville who wasn’t involved in the research.
Many poison dart frogs carry cocktails of toxic alkaloid molecules in their skin as a defense against predators (SN Online: 3/24/14). These toxins, picked up through the frogs’ diets, vary by species. Here, researchers studied frogs that carry epibatidine, a substance so poisonous that just a few millionths of a gram can kill a mouse.

Previous studies have shown that poisonous frogs have become resistant to the toxins the amphibians carry by messing with the proteins that these toxins bind to in the body. Switching out certain protein building blocks, or amino acids, changes the shape of the protein, which can prevent toxins from latching on. But making that change could have unintended side effects, too, says study coauthor Rebecca Tarvin, an evolutionary biologist at the University of Texas at Austin.

For example, the toxin epibatidine binds to proteins that are usually targeted by acetylcholine, a chemical messenger that’s necessary for normal brain function. So Tarvin and her colleagues looked at how this acetylcholine receptor protein differed between poison frog species that are resistant to epibatidine and some of their close relatives that aren’t.
Identifying differences between the frogs in the receptor protein’s amino acids allowed researchers to systematically test the effects of each change. To do so, the scientists put the genetic instructions for the same protein in humans, who aren’t resistant to epibatidine, into frog eggs. The researchers then replaced select amino acids in the human code with different poison frog substitutions to find an amino acid “switch” that would make the resulting receptor protein resistant to epibatidine.

But epibatidine resistance wasn’t a straightforward deal, it turned out. “We noticed that replacing one of those amino acids in the human [protein] made it resistant to epibatidine, but also affected its interaction with acetylcholine,” says study coauthor Cecilia Borghese, a neuropharmacologist also at the University of Texas at Austin. “Both are binding in the exact same region of the protein. It’s a very delicate situation.” That is, the amino acid change that made the receptor protein resistant to epibatidine also made it harder for acetylcholine to attach, potentially impeding the chemical messenger’s ability to do its job.

But the frogs themselves don’t seem impaired. That’s because other amino acid replacements elsewhere in the receptor protein appear to have compensated, Borghese and Tarvin found, creating a protein that won’t let the toxin latch on, but that still responds normally to acetylcholine.

The resistance-giving amino acid change appears to have evolved three separate times in poison frogs, Tarvin says. Three different lineages of the frogs have resistance to the poison, and all of them got that immunity by flipping the same switch. But the amino acid changes that bring back a normal acetylcholine response aren’t the same across those three groups.

“It’s a cool convergence that these other switches weren’t identical, but they all seem to recover that function,” Brodie says.

Radioactive material from Fukushima disaster turns up in a surprising place

Six years after the Fukushima nuclear reactor disaster in Japan, radioactive material is leaching into the Pacific Ocean from an unexpected place. Some of the highest levels of radioactive cesium-137, a major by-product of nuclear power generation, are now found in the somewhat salty groundwater beneath sand beaches tens of kilometers away, a new study shows.

Scientists tested for radioactivity at eight different beaches within 100 kilometers of the plant, which experienced three reactor meltdowns when an earthquake and tsunami on March 11, 2011, knocked out its power. Oceans, rivers and fresh groundwater sources are typically monitored for radioactivity following a nuclear accident, but several years following the disaster, those weren’t the most contaminated water sources. Instead, brackish groundwater underneath the beaches has accumulated the second highest levels of the radioactive element (surpassed only by the groundwater directly beneath the reactor), researchers report October 2 in the Proceedings of the National Academy of Sciences.

In the wake of the 2011 accident, seawater tainted with high levels of cesium-137 probably traveled along the coast and lapped against these beaches, proposes study coauthor Virginie Sanial, who did the work while at Woods Hole Oceanographic Institution in Massachusetts. Some cesium stuck to the sand and, over time, percolated down to the brackish groundwater beneath. Now, the radioactive material is steadily making its way back into the ocean. The groundwater is releasing the cesium into the coastal ocean at a rate that’s on par with the leakage of cesium into the ocean from the reactor site itself, Sanial’s team estimates.

Since this water isn’t a source of drinking water and is underground, the contamination isn’t an immediate public health threat, says Sanial, now a geochemist at the University of Southern Mississippi in Hattiesburg. But with about half of the world’s nuclear power plants located on coastlines, such areas are potentially important contamination reservoirs and release sites to monitor after future accidents.

Here is Cassini’s last broad look at the Saturn system

Two days before plunging into Saturn, the Cassini spacecraft took one last look around the planet it had orbited for more than 13 years.

The view of Saturn above, released November 21, is actually made from 42 images that have been stitched together. Six moons — Enceladus, Epimetheus, Janus, Mimas, Pandora and Prometheus — are faintly visible as dots surrounding the gas giant (see the annotated image below). Cassini was about 1.1 million kilometers away from Saturn when it took the images on September 13. The whole observation took a little over two hours.

On September 11, Cassini set itself on a collision course with Saturn, and on September 15, the probe ended its mission by burning up in Saturn’s atmosphere, taking data all the way down.

Wikipedia has become a science reference source even though scientists don’t cite it

Wikipedia: The settler of dinnertime disputes and the savior of those who cheat on trivia night. Quick, what country has the Nile’s headwaters? What year did Gershwin write “Rhapsody in Blue”? Wikipedia has the answer to all your burning trivia questions — including ones about science.

With hundreds of thousands of scientific entries, Wikipedia offers a quick reference for the molecular formula of Zoloft, who the inventor of the 3-D printer is and the fact that the theory of plate tectonics is only about 100 years old. The website is a gold mine for science fans, science bloggers and scientists alike. But even though scientists use Wikipedia, they don’t tend to admit it. The site rarely ends up in a paper’s citations as the source of, say, the history of the gut-brain axis or the chemical formula for polyvinyl chloride.
But scientists are browsing Wikipedia just like everyone else. A recent analysis found that Wikipedia stays up-to-date on the latest research — and vocabulary from those Wikipedia articles finds its way into scientific papers. The results don’t just reveal the Wiki-habits of the ivory tower. They also show that the free, widely available information source is playing a role in research progress, especially in poorer countries.

Teachers in middle school, high school and college drill it in to their students: Wikipedia is not a citable source. Anyone can edit Wikipedia, and articles can change from day to day — sometimes by as little as a comma, other times being completely rewritten overnight. “[Wikipedia] has a reputation for being untrustworthy,” says Thomas Shafee, a biochemist at La Trobe University in Melbourne, Australia.

But those same teachers — even the college professors — who warn students away from Wikipedia are using the site themselves. “Academics use Wikipedia all the time because we’re human. It’s something everyone is doing,” says Doug Hanley, a macroeconomist at the University of Pittsburgh.

And the site’s unreliable reputation may be unwarranted. Wikipedia is not any less consistent than Encyclopedia Britannica, a 2005 Nature study showed (a conclusion that the encyclopedia itself vehemently objected to). Citing it as a source, however, is still a bridge too far. “It’s not respected like academic resources,” Shafee notes.
Academic science may not respect Wikipedia, but Wikipedia certainly loves science. Of the roughly 5.5 million articles, half a million to a million of them touch on scientific topics. And constant additions from hundreds of thousands of editors mean that entries can be very up to date on the latest scientific literature.

How recently published findings affect Wikipedia is easy to track. They’re cited on Wikipedia, after all. But does the relationship go the other way? Do scientific posts on Wikipedia worm their way into the academic literature, even though they are never cited? Hanley and his colleague Neil Thompson, an innovation scholar at MIT, decided to approach the question on two fronts.

First, they determined the 1.1 million most common scientific words in published articles from the scientific publishing giant Elsevier. Then, Hanley and Thompson examined how often those same words were added to or deleted from Wikipedia over time, and cited in the research literature. The researchers focused on two fields, chemistry and econometrics — a new area that develops statistical tests for economics.

There was a clear connection between the language in scientific papers and the language on Wikipedia. “Some new topic comes up and it gets exciting, it will generate a new Wikipedia page,” Thompson notes. The language on that new page was then connected to later scientific work. After a new entry was published, Hanley and Thompson showed, later scientific papers contained more language similar to the Wikipedia article than to papers in the field published before the new Wikipedia entry. There was a definite association between the language in the Wikipedia article and future scientific papers.

But was Wikipedia itself the source of that language? This part of the study can’t answer that. It only observes words increasing together in two different spaces. It can’t prove that scientists were reading Wikipedia and using it in their work.

So the researchers created new Wikipedia articles from scratch to find out if the language in them affected the scientific literature in return. Hanley and Thompson had graduate students in chemistry and in econometrics write up new Wikipedia articles on topics that weren’t yet on the site. The students wrote 43 chemistry articles and 45 econometrics articles. Then, half of the articles in each set got published to Wikipedia in January 2015, and the other half were held back as controls. The researchers gave the articles three months to percolate through the internet. Then they examined the next six months’ worth of published scientific papers in those fields for specific language used in the published Wikipedia entries, and compared it to the language in the entries that never got published.

In chemistry, at least, the new topics proved popular. Both the published and control Wikipedia page entries had been selected from graduate level topics in chemistry that weren’t yet covered on Wikipedia. They included entries such as the synthesis of hydrastine (the precursor to a drug that stops bleeding). People were interested enough to view the new articles on average 4,400 times per month.

The articles’ words trickled into to the scientific literature. In the six months after publishing, the entries influenced about 1 in 300 words in the newly published papers in that chemical discipline. And scientific papers on a topic covered in Wikipedia became slightly more like the Wikipedia article over time. For example, if chemists wrote about the synthesis of hydrastine — one of the new Wikipedia articles — published scientific papers more often used phrases like “Passarini reaction,” a term used in the Wikipedia entry. But if an article never went on to Wikipedia, the scientific papers published on the topic didn’t become any more similar to the never-published article (which could have happened if the topics were merely getting more popular). Hanley and Thompson published a preprint of their work to the Social Science Research Network on September 26.

Unfortunately, there was no number of Wikipedia articles that could make econometrics happen. “We wanted something on the edge of a discipline,” Thompson says. But it was a little too edgy. The new Wikipedia entries in that field got one-thirtieth of the views that chemistry articles did. Thompson and Hanley couldn’t get enough data from the articles to make any conclusions at all. Better luck next time, econometrics.

The relationship between Wikipedia entries and the scientific literature wasn’t the same in all regions. When Hanley and Thompson broke the published scientific papers down by the gross domestic product of their countries of origin, they found that Wikipedia articles had a stronger effect on the vocabulary in scientific papers published by scientists in countries with weaker economies. “If you think about it, if you’re a relatively rich country, you have access at your institution to a whole list of journals and the underlying scientific literature,” Hanley notes. Institutions in poorer countries, however, may not be able to afford expensive journal subscriptions, so scientists in those countries may rely more heavily on publicly available sources like Wikipedia.

The Wikipedia study is “excellent research design and very solid analysis,” says Heather Ford, who studies digital politics at the University of Leeds in England. “As far as I know, this is the first paper that attributes a strong link between what is on Wikipedia and the development of science.” But, she says, this is only within chemistry. The influence may be different in different fields.

“It’s addressing a question long in people’s minds but difficult to pin down and prove,” says Shafee. It’s a link, but tracking language, he explains, isn’t the same as finding out how ideas and concepts were moving from Wikipedia into the ivory tower. “It’s a real cliché to say more research is needed, but I think in this case it’s probably true.”

Hanley and Thompson would be the first to agree. “I think about this as a first step,” Hanley says. “It’s showing that Wikipedia is not just a passive resource, it also has an effect on the frontiers of knowledge.”

It’s a good reason for scientists get in and edit entries within their expertise, Thompson notes. “This is a big resource for science and I think we need to recognize that,” Thompson says. “There’s value in making sure the science on Wikipedia is as good and complete as possible.” Good scientific entries might not just settle arguments. They might also help science advance. After all, scientists are watching, even if they won’t admit it.